approximate multi-additive mappings in 2-banach spaces

Authors

k. cieplinski

abstract

a mapping $f:v^n longrightarrow w$, where $v$ is a commutative semigroup, $w$ is a linear space and $n$ is a positive integer, is called multi-additive if it is additive in each variable. in this paper we prove the hyers-ulam stability of multi-additive mappings in 2-banach spaces. the corollaries from our main results correct some outcomes from [w.-g. park, approximate additive mappings in 2-banach spaces and related topics,   j. math. anal. appl.  376 (2011) 193--202].

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Approximate multi-additive mappings in 2-Banach spaces

A mapping $f:V^n longrightarrow W$, where $V$ is a commutative semigroup, $W$ is a linear space and $n$ is a positive integer, is called multi-additive if it is additive in each variable. In this paper we prove the Hyers-Ulam stability of multi-additive mappings in 2-Banach spaces. The corollaries from our main results correct some outcomes from [W.-G. Park, Approximate additive mappings i...

full text

Approximate additive and quadratic mappings in 2-Banach spaces and related topics

Won{Gil Park [Won{Gil Park, J. Math. Anal. Appl., 376 (1) (2011) 193{202] proved the Hyers{Ulam stability of the Cauchy functional equation, the Jensen functional equation and the quadraticfunctional equation in 2{Banach spaces. One can easily see that all results of this paper are incorrect.Hence the control functions in all theorems of this paper are not correct. In this paper, we correctthes...

full text

Approximate mixed additive and quadratic functional in 2-Banach spaces

In the paper we establish the general solution of the function equation f(2x+y)+f(2x-y) = f(x+y)+f(x-y)+2f(2x)-2f(x) and investigate the Hyers-Ulam-Rassias stability of this equation in 2-Banach spaces.

full text

approximate additive and quadratic mappings in 2-banach spaces and related topics

won{gil park [won{gil park, j. math. anal. appl., 376 (1) (2011) 193{202] proved the hyers{ulam stability of the cauchy functional equation, the jensen functional equation and the quadraticfunctional equation in 2{banach spaces. one can easily see that all results of this paper are incorrect.hence the control functions in all theorems of this paper are not correct. in this paper, we correctthes...

full text

Approximate Quartic and Quadratic Mappings in Quasi-Banach Spaces

The stability problem of functional equations originated from a question of Ulam 1 in 1940, concerning the stability of group homomorphisms. Let G1, · be a group, and let G2, ∗ be a metric group with the metric d ·, · . Given > 0, does there exist a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality d h x · y , h x ∗ h y < δ for all x, y ∈ G1, then there exists a homomorphism H :...

full text

Approximate a quadratic mapping in multi-Banach spaces, a fixed point approach

Using the fixed point method, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation in multi-Banach spaces:begin{equation} sum_{ j = 1}^{n}fBig(-2 x_{j} + sum_{ i = 1, ineq j}^{n} x_{i}Big) =(n-6) fBig(sum_{ i = 1}^{n} x_{i}Big) + 9 sum_{ i = 1}^{n}f(x_{i}).end{equation}

full text

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

Publisher: iranian mathematical society (ims)

ISSN 1017-060X

volume 41

issue 3 2015

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023